Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《大气科学进展(英文版)》 2007-03
Add to Favorite Get Latest Update

Analysis of a Group of Weak Small-Scale Vortexes in the Planetary Boundary Layer in the Mei-yu Front

ZHAI Guoqing, ZHOU Lingli WANG Zhi Department of Earth Sciences, Zhejiang University, Hangzhou 310027 Shanghai Meteorology Center, Shanghai 200030  
A mei-yu front process in the lower reaches of the Yangtze River on 23 June 1999 was simulated by using the fifth-generation Pennsylvania State University-NCAR (PSU/NCAR) Mesoscale Model (MM5) with FDDA (Four Dimension Data Assimilation). The analysis shows that seven weak small mesoscale vortexes of tens of kilometers, correspondent to surface low trough or mesoscale centers, in the planetary boundary layer (PBL) in the mei-yu front were heavily responsible for the heavy rainfall. Sometimes, several weak small-scale vortexes in the PBL could form a vortex group, some of which would weaken locally, and some would develop to be a meso-α-scale low vortex through combination. The initial dynamical triggering mechanism was related to two strong currents: one was the northeast flow in the PBL at the rear of the mei-yu front, the vortexes occurred exactly at the side of the northeast flow; and the other was the strong southwest low-level jet (LLJ) in front of the Mei-yu front, which moved to the upper of the vortexes. Consequently, there were notable horizontal and vertical wind shears to form positive vorticity in the center of the southwest LLJ. The development of mesoscale convergence in the PBL and divergence above, as well as the vertical positive vorticity column, were related to the small wind column above the nose-shaped velocity contours of the northeast flow embedding southwestward in the PBL, which intensified the horizontal wind shear and the positive vorticity column above the vortexes, baroclinicity and instability.
【CateGory Index】: P433
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved