Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《Journal of Guangxi Normal University(Natural Science Edition)》 2009-03
Add to Favorite Get Latest Update

A New One-dimensional Smoothed Particle Hydrodynamics Method in Simulating Discontinuous Problem

SONG Jun-hao,ZHANG Chao-ying,LIANG Chao-xiang,LI Wen-gui(College of Computer Science and Information Technology,Guangxi Normal University,Guilin 541004,China)  
For simulating discontinuous physical phenomenon,this paper puts forward a new one-dimensional formula based on restoring particle inconsistency in smoothed particle hydrodynamics(RSPH).Applying Taylor series expansion,neglecting the second and higher derivatives,and associating with these equations,the new approach deduces a new kernel and particle approximation without kernel estimation.In the numerical simulation,the new formulation not only remedies the boundary deficiency problem in the original SPH but also more efficiently repairs the truncated integral in kernel approximation caused by discontinuity and eliminates the errors from particle inconsistency in discontinuous region.
【Fund】: 国家自然科学基金资助项目(10447001);; 广西自然科学基金资助项目(0542045);; 广西研究生教育创新计划项目
【CateGory Index】: O351.2
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
【Citations】
Chinese Journal Full-text Database 4 Hits
1 ZHU Guo-qing,LI Qing-shan,CHEN Shao-chun(Department of Mathematics,Zhengzhou University,Zhengzhou 450052,China);Finite Element Approximation for Semi-singularly Perturbed Problems under Graded Meshes[J];Journal of Guangxi Normal University(Natural Science Edition);2007-03
2 Li Mei 'e Zhou Jinxiong (Xi 'an Jiaotong University);MODELING FREE SURFACE FLOW OF INCOMPRESSIBLE FLUID USING SPH[J];Chinese Journal of Mechanical Engineering;2004-03
3 LI Shengkun,FENG Minfu,LI Shan (College of Mathematics, Sichuan University, Chengdu 610064, Sichuan) ;Finite Difference Approximate Solutions for the Benjamin-Bona-Mahony Equation[J];Journal of Sichuan Normal University(Natural Science);2003-04
4 SONG Shi-cang,CHEN Shao-chun(Department of Mathematics,Zhengzhou University,Zhengzhou450001,China);A New Discrete Scheme to Solve Second Order Elliptic Problem with Numerical Integration and Convergence Analysis Under Weak Conditions[J];Journal of Zhengzhou University(Natural Science Edition);2007-04
【Co-citations】
Chinese Journal Full-text Database 10 Hits
1 ZHOU Dai , CHEN Si , DONG Shi-ling , LI Hua-feng , YANG Guang (Research Center of Spatial Structures, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China);ELASTIC ANALYSIS BY IMPROVED SPH METHOD[J];Engineering Mechanics;2008-09
2 XING Aiguo XU Nana SONG Xinyuan(Department of Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240);NUMERICAL SIMULATION OF LAKE WATER DOWN-STREAM FLOODING DUE TO SUDDEN BREAKAGE OF YIGONG LANDSLIDE DAM IN TIBET[J];Journal of Engineering Geology;2010-01
3 Lv Wen-cui,Ge qi;SPH numerical simulation of vertical two-dimensional water and sediment[J];Jilin Water Resources;2009-01
4 Hassan Ostad,Soheil Mohammadi School of Civil Engineering,University of Tehran,Enghelab Ave.,Tehran,Iran;Analysis of shock wave reflection from fixed and moving boundaries using a stabilized particle method[J];中国颗粒学报(英文版);2009-05
5 ZHAO Yan,XU Fei*,LI Yu-long(School of Aeronautics,Northwestern Polytechnical University,Xi'an 710072,China);An improved SPH method in the discontinuous interface problem[J];Chinese Journal of Computational Mechanics;2009-06
6 ZUO Jin-ming(School of Mathematics and Information Science,Shandong University of Technology,Zibo 255049,Shandong,China);A computational method for the nonlinear BBM equation[J];Journal of Shandong University(Natural Science);2008-04
7 DU Xiao-tao, WU Wei, GONG Kai, LIU Hua(School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiaotong University,Shanghai 200030,China);Two dimensional SPH simulation of water waves generated by underwater landslide[J];Journal of Hydrodynamics(Ser.A);2006-05
8 YANG Ren,ZHOU Yu-qian,LI Jian(School of Mathematics,Chengdu University of Information Technology,Chengdu 610225,Sichuan);A Difference Scheme Solving First Order Linear Hyperbolic Partial Differential Equations[J];Journal of Sichuan Normal University(Natural Science);2009-05
9 CHEN Zheng-yun1,ZHU Ren-qing1,QI Jiang-tao2(1.Jiangsu University of Science and Technology,Zhenjiang Jiangsu 212003,China;2.China Ship Scientific Research Center,Wuxi Jiangsu 214082,China);Numerical Simulation of Sloshing in Two Dimensional Liquid Tank Based on SPH Method[J];Ship & Ocean Engineering;2008-02
10 HUANG Yu1,2,HAO Liang1,NONOYAMA Hideto1,3(1.Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China;2.Key Laboratory of Geotechnical and Underground Engineering of the Ministry of the Education,P.R.China,Tongji University,Shanghai 200092,China;3.Department of Civil Engineering,Gifu University,Gifu 501-1193,Japan);The state of the art of SPH method applied in geotechnical engineering[J];Chinese Journal of Geotechnical Engineering;2008-02
China Proceedings of conference Full-text Database 1 Hits
1 WANG Ben-long~1 CAUSON,D C~2 LIU Hua~1 (1.School of Naval Architecture,Ocean and Civil Engrg.,Shanghai Jiao Tong University,Shanghai 200242; 2.CMMFA,Computing and Mathematics,Manchester Metropolitan University,Manchester M1 5GD,U.K.);Parallel solutionof incompressible SPH model[A];[C];2008
【Secondary Citations】
Chinese Journal Full-text Database 7 Hits
1 N'guimbi GermainDept.ofMath.,ShandongUniv.,Jinan250100.(CONGO-BRAZZAVILLE);THE EFFECT OF NUMERICAL INTEGRATION IN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC EQUATIONS[J];高校应用数学学报B辑(英文版);2001-02
2 Zhang Suochun (Institute of Applied Mathematics, Academia Sinica, Beijing 100080);SMOOTHED PARTICLE HYDRODYNAMICS (SPH) METHOD (A REVIEW)[J];CHINESE JOURNAL OF COMPUTATION PHYSICS;1996-04
3 LUO Ming ying 1, SHU Guo hao 1, WANG Dian zhi 2 (1. Department of Mathematics, Xichang Teacher's College, Xichang 615022, Sichuan; 2. Department of Mathematics, Sichuan University, Chengdu 610064, Sichuan);Finite Difference Approximate Solutions for the RLW Equation[J];Journal of Sichuan Normal University(Natural Science);2001-02
4 Qu Shuanghong, Chen Shaochun (Department of Mathematics, Zhengzhou University,Zhengzhou 450052);Narrow Hermite Triangular Element for the Second Order Problem[J];Journal of Zhengzhuou University (Natural Science Edition);2002-02
5 Qiao Zhonghua, Chen Shaochun (Department of Mathematics, Zhengzhou University, Zhengzhou 450052);Narrow Bicubic Hermite Rectangular Element[J];Journal of Zhengzhou University (Natural Science Edition);2003-01
6 Li Qingshan 1,Chen Shaochun 2,Wang Fuwei 3 (1.Editorial Department,Journal of Zhengzhou University,Zhengzhou 450052,China; 2.Department of Mathematics,Zhengzhou University,Zhengzhou 450052,China; 3.Network Centre,Zhengzhou Antiaircraft Academy,Zhengzhou 450052,China);Optimization for Interpolation Theorem of Narrow Quadrilateral[J];Journal of Zhengzhou University (Natural Science Edition);2003-04
7 Chen Shaochun, Zhu Guoqing (Department of Mathematics,Zhengzhou University,Zhengzhou 450052 ,China);Nine Parameters Nonconforming Element in 3-dimensional Space[J];Journal of Zhengzhou University (Natural Science Edition);2004-02
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved