Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《Journalof Southwest China Normal University(Natural Science)》 2002-06
Add to Favorite Get Latest Update

A Note on Periodic Solutions for Superquadratic Hamiltonian Systems

CHEN Shangjie, \ TANG ChunleiDept. of Mathematics, Southwest China Normal University, Chongqing 400715, China  
Periodic solutions are obtained for superquadratic Hamiltonian systems by using the minimax methods. 
【Fund】: 国家自然科学基金资助项目(19871067);; 教育部科学技术重点项目;; 教育部高等学校优秀青年教师教学科研奖励计划项目.
【CateGory Index】: O175
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
【References】
Chinese Journal Full-text Database 3 Hits
1 DUAN Chun-sheng1,CHEN Shang-jie2,TANG Chun-lei21.College of Computer Science,Civil Aviation Flight University of China,Guanghan Sichuan 618307,China;2.School of Mathematics and Statistics,Southwest University,Chongqing 400715,China;A Note on a Nonhomogeneous Schrdinger-Maxwell Equations on R~3[J];西南大学学报(自然科学版);2010-04
2 WAN Li-ping,TANG Chun-leiSchool of Mathematics and Finance,Southwest University,Chongqing 400715,China;Existence and Multiplicity of Solutions of Second-order Hamiltonian Systems[J];西南师范大学学报(自然科学版);2006-01
3 LV Ying, TANG Chun-lei School of Mathematics and Finance, Southwest University, Chongqing 400715, China;Symmetric Homoclinic Orbits for Second Order Hamiltonian Systems[J];西南师范大学学报(自然科学版);2005-05
【Co-references】
Chinese Journal Full-text Database 7 Hits
1 WAN Li-li1,2,TANG Chun-lei21. School of Science,Southwest University of Science and Technology,Mianyang Sichuan 621010,China;2. School of Mathematics and Statistics,Southwest University,Chongqing 400715,China;Existence of Solutions for Asymptotically Linear Schrdinger Equations[J];西南大学学报(自然科学版);2009-08
2 OU Zeng-qi~1, TANG Chun-lei~2 1. College of Basic Science and Technology, Southwest Agricultural University, Chongqing 400716, China; 2. School of Mathematics and Finance, Southwest China Normal University, Chongqing 400715, China;Periodic Solutions for a Class of Nonautonomous Superquadratic Second Order Hamiltonian System[J];西南师范大学学报(自然科学版);2005-02
3 CHEN Shang-jie~1,XI Da-you~2,TANG Chun-lei~11. School of Mathematics and Finance, Southwest China Normal University, Chongqing 400715, China;2. Elementary Education College, Chongqing Normal University, Chongqing 400700, China;Subharmonic Solutions for "Superquadratic" Hamiltonian Systems[J];西南师范大学学报(自然科学版);2004-01
4 CHEN Shangjie, \ TANG ChunleiDept. of Mathematics, Southwest China Normal University, Chongqing 400715, China;A Note on Periodic Solutions for Superquadratic Hamiltonian Systems[J];西南师范大学学报(自然科学版);2002-06
5 TAO Zhulian1, 2, TANG Chunlei11. Dept. of Mathematics, Southwest China Normal University, Chongqing 400715, China; 2. Dept. of Mathematics, Logistics Eengineering University, Chongqing 400016, China;Periodic Solutions of Nonquadratic Second Order Hamiltonian Systems[J];西南师范大学学报(自然科学版);2002-06
6 TANG Chun\|lei, WU Xing\|ping (Dept. of Mathematics, Southwest China Normal University, Chongqing 400715);Applications of the least action principle to second order Hamiltonian systems[J];西南师范大学学报(自然科学版);2000-04
7 HAN Zhi-qing (Institute of Mathematicol Sciences, Dalian University of Technology, Dalian 116024, P. R. China) (E-mail: hanzhiq@dlut.edu.cn);2π-Periodic Solutions to Ordinary Differential Systems at Resonance[J];数学学报;2000-04
【Secondary References】
Chinese Journal Full-text Database 2 Hits
1 DING Ling School of Mathematics and Computer Science,Hubei University of Arts and Science,Xiangyang Hubei 441053,China;Infinitely Many Solutions for Coupled Klein-Gordon and Born-Infeld Systems with the General Nonlinearity[J];西南师范大学学报(自然科学版);2013-01
2 CHEN Shang-jie1,LI Lin2 1.School of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067,China;2.School of Mathematics and Statistics,Southwest University,Chongqing 400715,China;A Note on a Nonhomogeneous Kirchhoff Equation on R~N[J];西南师范大学学报(自然科学版);2012-07
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved