Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《中国颗粒学报(英文版)》 2003-05
Add to Favorite Get Latest Update

DISCRETE MODELLING OF TWO-DIMENSIONAL LIQUID FOAMS

Qicheng Sun Physics Department, Trinity College, Dublin 2, Ireland E-mail: sunq@tcd.ie  
Liquid foam is a dense random packing of gas or liquid bubbles in a small amount of immiscible liquid containing surfactants. The liquid within the Plateau borders, although small in volume, causes considerable difficulties to the investigation of the spatial structure and physical properties of foams, and the situation becomes even more com-plicated as the fluid flows. To solve these problems, a discrete model of two-dimensional liquid foams on the bubble scale is proposed in this work. The bubble surface is represented with finite number of nodes, and the liquid within Plateau borders is discretized into lattice particles. The gas in bubbles is treated as ideal gas at constant temperatures. This model is tested by choosing an arbitrary shape bubble as the initial condition. This then automatically evolves into a cir-cular shape, which indicates that the surface energy minimum routine is obeyed without calling external controlling con-ditions. Without inserting liquid particle among the bubble channels, periodic ordered and disordered dry foams are both simulated, and the fine foam structures are developed. Wet foams are also simulated by inserting fluid among bubble channels. The calculated coordination number, as a function of liquid fractions, agrees well with the standard values.
【CateGory Index】: TQ021
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved