Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《Advances in Meteorological Science and Technology》 2018-03
Add to Favorite Get Latest Update

A Review on the Ensemble-Based Data Assimilations for Severe Convective Storms

Zhang Yunji;Zhang Fuqing;Center for Advanced Data Assimilation and Predictability Techniques, Department of Meteorology and Atmospheric Sciences, Pennsylvania State University;  
Predicting severe convective storms has long been recognized as one of the most important aspects as well as one of the most difficult part of weather forecast. With advanced ensemble-based data assimilation techniques like ensemble Kalman filter, the uncertainties in initial conditions of storm-scale weather prediction can be significantly reduced, leading to an improved performance of severe weather forecast. This review paper will briefly introduce the concepts and variations of ensemble Kalman filter, schemes to improve filter performance at storm scales, applications of various conventional and in situ observational platforms in ensemble data assimilation, and focuses on the severe weather prediction systems as well as operational and quasi-operational storm-scale ensemble data assimilation and prediction systems, the issues and difficulties that encountered in current applications, and possible future directions.
【CateGory Index】: P457.9
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved