Full-Text Search:
Home|About CNKI|User Service|中文
Add to Favorite Get Latest Update


Yang Xiuqun and Shao Hui(Department of Atmospheric Sciences, Nanjing University, Nanjing 210093)  
Based on years of month-to-month observations of sea surface temperature anomaly (SSTA) and wind stress anomaly, typical wind stress patterns in the tropical Pacific associated with ENSO are Studied with the techniques of linear regression and EOF analysis. The anomalous field, which is linearly correlated with ENSO, is found to be varying at low frequencies on the temporal scale and to be in four typical patterns of distribution horizontally.Pattern 1 is of the easterly anomaly and wind stress divergence in the equatorial region east of the date line. Pattern 2 is of the westerly anomaly and wind sttess convergence in the equatorial region east of the date line. Pattern 3 is of the westerly anomaly and wind stress convergence south of the Equator but east of the data line, with the easterly anomaly west of it. Pattern 4 is of the weak easerly anomaly east 160°W and the westerly anomaly west of 160°W. Wind stress fields linearly independent of ENSO are of a high-frequency process with a typical pattern off the Equator that has a large horizontal amplitude. Using an ocean anomaly-forcing model with the regressed wind stress anomaly field that is associated with ENSO, principal signals of ENSO are reproduced. It indicates the fundamental nature of the typical wind field anomaly patterns revealed for the genesis of El Nino.
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
©CNKI All Rights Reserved