Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《Mathematics in Practice and Theory》 2013-01
Add to Favorite Get Latest Update

The Douball-Periodical Solutions of Nonlinear Vibration Equation in Quasi-one-dimensional Monoatomic Lattice

YANG Li-ying (College of Science,Inner Mongolia Agricultural University,Huhhot 010018,China)  
The equations of nonlinear vibration in quasi-one-dimensional monoatomic lattice were solved by virtue of the method of travelling wave transformation and auxiliary elliptic equation.Some new double-periodical solutions in terms of Jaccobi elliptic functions are obtained.When the module of Jaccobi elliptic function tends to zero,these new double-periodical solutions degenerate the kink-solitons and like-solitons of nonlinear vibration equation in quasi-one-dimensional monoatomic lattice.
【Fund】: 国家自然科学基金(11262017);; 内蒙古自然科学基金(2009MS0102)
【CateGory Index】: O175
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
【Citations】
Chinese Journal Full-text Database 2 Hits
1 Xu Gui-Qiong 1)2) Li Zhi-Bin 1) 1)(Department of Computer Science, East China Normal Universtiy, Shanghai 200062, China) 2)(Departmen of Information Engineering and Administration, Shanghai University, Shanghai 200436, China);Solitary wave solutions of a nonlinear evolution equation using mixed exponential method[J];Acta Physica Sinica;2002-05
2 Liu Guan-Ting 1)2) Fan Tian-You 1) 1)(School of Science, Beijing Institute of Technology, Beijing 100081, China) 2)(Department of Mathematics, Inner Mongolia Normal University, Huhhot 010022, China);Jacobi elliptic function expansion method under a general function transform and its applications[J];Acta Physica Sinica;2004-03
【Co-citations】
Chinese Journal Full-text Database 10 Hits
1 QIAN Tian-hong~(1,2), LIU Zhong-fei~2, HAN Jia-hua~2(1.Physics Laboratory,Department of Pharmacy,Anhui College of Traditional Chinese Medicine,Hefei 230031, China;2.School of Physics and Material Science,Anhui University,Hefei 230039,China);The Multi-order Exact Solutions for the Nonlinear Schr dinger Equation and Cubic Nonlinear Schr dinger Equation[J];Journal of Anhui Institute of Education;2005-03
2 HAN Jia-hua, CHEN Liang, XU Yong, LIU Zhong-fei,LIU Yan-mei, ZHAO Zong-yan (Department of Physics, Anhui University,Hefei230039, China);Explicit and exact solutions to the combined KdV equation and two-dimension KdV equation[J];Journal of Anhui University(Natural Sciences);2004-01
3 HAN Jia-hua,WU Guo-jiang,SHI Liang-ma,LIU Zhong-fei (School of Physics and Material Science,Anhui University,Hefei 230039,China);Expansion method for modified double Jacobian elliptic funtion and its application[J];Journal of Anhui University(Natural Sciences);2005-04
4 WU Guo-jiang,HAN Jia-Hua,SHI Liang-ma(School of Physics and Material Science,Anhui University,Hefei 230039,China);The new exact solutions to Klein-Gordon equation under a general function transform[J];Journal of Anhui University(Natural Sciences);2006-01
5 WANG Jun-mao,ZHANG Wen-liang,ZHANG Miao,WU Guo-jiang,HAN Jia-hua (School of Physics and Material Science,Anhui University,Hefei 230039,China);New exact solitary wave solutions for a class of nonlinear wave equations[J];Journal of Anhui University(Natural Sciences);2008-04
6 QIAN Tian-hong 1,2 , LIU Zhong-fei 1, HAN Jia-hua 1 (1.Department of Physics, Anhui University, Hefei, 230039, China; 2.Physics Laboratory, Department of Pharmacy, Anhui College of Traditional Chinese Medicine, Hefei, 230031, China);New accuracy of nonlinear wave equation[J];Journal of Anhui Institute of Architecture;2005-01
7 WANG Rui-min~1,XU Chang-zhi~2(1.Zhejiang College of Jinhua Profession and Technology Jinhua 321007,China;2.Zhejiang College of Jinhua Education Jinhua 321000,China);RATIONAL FRACTION SOLUTIONS FOR GENERALIZED COUPLED KdV NONLINEAR EQUATIONS[J];Journal of Anhui Normal University(Natural Science);2004-01
8 HU Yun-jia~1,LI Hai-yang~2,WANG Ting-ting~2 (1.Testing Center,Jiamusi Quality and Technical Supervision Bureau,Jiamushi 154002,China; 2.School of Science,University of Science and Technology Liaoning,Anshan 114051,China);Homotopy perturbation method solution for nonlinear oscillation equation[J];Journal of University of Science and Technology Liaoning;2012-01
9 ZHANG Neng-wei,LV Hai-yan(School of Mathematics and Statistics,Anyang Normal University,Anyang 455002);The Exact Solutions of A Class of RLW-Burgers Equations[J];Journal of Anyang Normal University;2010-02
10 Wang Yan Sun Fuwei (College of Science,North China Univ.of Tech.,100144,Beijing,China);Exact Solution and Bcklund Transformation of Variable Coefficients KdV-Burgers Equation[J];Journal of North China University of Technology;2009-03
China Proceedings of conference Full-text Database 1 Hits
1 WANG Zhi-bin, LI Zhi-quan, YAN Li-juan, NIU Li-yong (College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China);Study on the basal theory of optical soliton communications[A];[C];2005
【Secondary Citations】
Chinese Journal Full-text Database 8 Hits
1 Li Zhibin ;Zhang Shanqing(Department of Mathematics. Lanzhou University. Lanzhou. 730000. PR China);Exact Solitary Wave Solutions for Nonlinear Wave Equations Using Symbolic Computation[J];ACTA MATHEMATIEA SCIENTIA;1997-01
2 LI ZHI BIN (Department of Computer Science, East China Normal University, Shanghai 200062,China) PAN SU QI (Department of Computer Science, Lanzhou University, Lanzhou 730000,China);EXACT SOLITARY WAVE AND SOLITON SOLUTIONS OF THE GENERALIZED FIFTH ORDER KdV EQUATION[J];Acta Physica Sinica;2001-03
3 LIU SHI-KUO 1) FU ZUN-TAO 1)2) LIU SHI-DA 1)2) ZHAO QIANG 1) 1) (Department of Geophysics, Peking University, Beijing 100871,China) 2) (State Key Laboratory of Turbulence Research,Peking University,Beijing 100871,C;EXPANSION METHOD ABOUT THE JACOBI ELLIPTIC FUNCTION ANDITS APPLICATIONS TO NONLINEAR WAVE EQUATIONS[J];Acta Physica Sinica;2001-11
4 Liu Shi Kuo 1) \ Fu Zun Tao 1)2) \ Liu Shi Da 1)2) \ Zhao Qiang 1) 1) (Department of Geophysics, Peking University, Beijing 100871, China) 2) (SKLTR, Peking University, Beijing 100871, China);New periodic solutions to a kind of nonlinear wave equations[J];Acta Physica Sinica;2002-01
5 Xu Gui-Qiong 1)2) Li Zhi-Bin 1) 1)(Department of Computer Science, East China Normal Universtiy, Shanghai 200062, China) 2)(Departmen of Information Engineering and Administration, Shanghai University, Shanghai 200436, China);Solitary wave solutions of a nonlinear evolution equation using mixed exponential method[J];Acta Physica Sinica;2002-05
6 Zhang Shan-Qing Li Zhi-Bin (Department of Computer Science, East China Normal University, Shanghai 200062, China);A new application of Jacobi elliptic function expansion method[J];Acta Physica Sinica;2003-05
7 Li De Sheng 1)2) Zhang Hong Qing 1) 1) (Department of Applied Mathematics, Dalian University of Technology, Dalian 116024,China) 2) (School of Science, Shenyang University of Technology, Shenyang 110023,China) (Received 8 November 2002; revised manuscript received 24 December 2002);Improved tanh-function method and the new exact solutions for the general variable coefficient KdV equation and MKdV equation[J];Acta Physica Sinica;2003-07
8 FAN EN GUI ZHANG HONG QING (Institute of Mathematical Science,Dalian University of Technology,Dalian\ 116024);THE HOMOGENEOUS BALANCE METHOD FOR SOLVING NONLINEAR SOLITON EQUATIONS[J];ACTA PHYSICA SINICA;1998-03
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved