Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《Journal of Shantou University(Natural Science Edition)》 2007-01
Add to Favorite Get Latest Update

Stochastic Exact Solution of the Generalized StochasticKdV-Burgers Equation

WEI Cai-min(Department of Mathematics,Shantou University,Shantou 515063,Guangdong,China)  
By using Hermite transformation,a generalized stochastic KdV-Burgers equation is researched.A new exact solution is shown via special truncation expansion method and Hermite transformation.
【CateGory Index】: O175.2
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
【Citations】
Chinese Journal Full-text Database 4 Hits
1 ZHANG JIE-FANG CHEN FANG-YUE(Zhejiang Normal University, Jinhua 321004, China);TRUNCATED EXPANSION METHOD AND NEW EXACT SOLITON-LIKE SOLUTION OF THE GENERAL VARIABLE COEFFICIENT KdV EQUATION[J];Acta Physica Sinica;2001-09
2 Wei Cai-Min~1) Xia Zun-Quan{1)} Tian Nai-Shuo{2)} ~ ~1) (Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China) ~ ~2) (School of Science, Yanshan University, Qinhuangdao 066004, China);New exact soliton-like solution for a generalized stochastic KdV equation[J];Acta Physica Sinica;2005-06
3 LI Guan-qiang,XUE Ju-kui(College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,Gansu,China);On exact solutions of a type of generalized KdV-Burgers equations with variable coefficients[J];Journal of Northwest Normal University(Natural Science Edition);2005-01
4 YANG Hong-juan~1,SHI Yu-ren~(1,2),DUAN Wen-shan~1,L Ke-pu~1(1.College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,Gansu,China;2.Institute of Theoretical Physics,Lanzhou University,Lanzhou 730000,Gansu,China);Exact solutions of KdV-Burgers equation with variable coefficients[J];Journal of Northwest Normal University(Natural Science Edition);2005-05
【Co-citations】
Chinese Journal Full-text Database 10 Hits
1 SHI Liang-ma,LIU Zhong-fei,CHEN Liang,WU Guo-jiang,HAN Jia-hua (School of Physics & Material Science, Anhui University, Hefei 230039,China);New exact solution of the general variable coefficient KdV equation[J];Journal of Anhui University(Natural Sciences);2005-02
2 WANG Rui-min~1,XU Chang-zhi~2(1.Zhejiang College of Jinhua Profession and Technology Jinhua 321007,China;2.Zhejiang College of Jinhua Education Jinhua 321000,China);RATIONAL FRACTION SOLUTIONS FOR GENERALIZED COUPLED KdV NONLINEAR EQUATIONS[J];Journal of Anhui Normal University(Natural Science);2004-01
3 SHI Liang-ma1,2,HAN Jia-hua3,ZHOU Shi-ping1 (1.Department of Physics,Shanghai University,Shanghai,200444,China;2.Anhui Industry & Trade Polytechnic,Huainan,232001,China;3.School of Physics & Material Science,Anhui University,Hefei,230039,China);Improved Truncated Expansion Method and Its Applications to Variable Coefficent Nonlinearer Equations[J];Journal of Anhui Normal University(Natural Science);2007-06
4 XU Changzhi(Physics Department of Jinhun Education College, Jinhun 321000,China);Solitary Wave Solution of the Variabe Coefficient KDV Nonlinear Equation[J];Journal of Anqing Teachers College(Natural Science Edition);2003-01
5 HONG Bao-jian,LU Dian-chen,TIAN Li-xin (Center of Nolinear Science Research,Jiangsu University,Zhenjiang Jiangsu 212013,China);Auto-Backlund Transformations and Exact Solitons-Like Solutions for the Variable Coefficient Combined kdv-Burgers Equation[J];Journal of Jiangxi Normal University(Natural Sciences Edition);2006-01
6 LIU Yu~1,FAN Li-Qun~2 (1.Henan Electric Power Research Institute,Zhengzhou 450052, China; 2.Henan College of Science and Technology,Xinxiang 453003,China);Extension of the Trial Function Method Based on Cole-Hopf Trans formation and New Explicit Exact Solutions for Burgers Equation[J];Journal of Changsha University of Electric Power(Natural Science);2006-03
7 ZHENG Chun long 1 SHENG Zheng mao 2 ZHANG Jie fang 3(1.Department of Physics,Zhejiang University,Hangzhou,310000; 2.Institute of Nonlinear Physics,Zhejiang Normal University,Jinghua,321004; 3.Department of Physics,Lishui Teachers College,Zheji;A New Truncated Method for Solving Nonlinear Evolution Equations[J];Journal of Changsha University;2002-02
8 JIN Xiang-yang,ZHOU Guo-zhong(Jinhua Broadcast Television University,321000,Jinhua,Zhejiang,China);The New Explicit and Exact Solution of the Combined KdV Equation[J];Journal of Huaibei Industry Teachers College (Natural Sciences Edition);2005-04
9 HUANG Wei-xiang,SONG Xian-fa (1.Guangdong Technical College of Water Resources and Electric Engineering,Guangzhou 510635,China;2.Department of Applied Mathematics,Tsinghua University,Beijing 100084,China);Exact Solutions for Wick-type Stochastic Generalized kdv Equation[J];Journal of Guangdong University of Technology;2007-02
10 ZHANG Yu feng 1,2 , KONG Ling chen 1, YANG Geng wen 3 (1. Shandong University of Science and Technology, Taian 271019, China; 2. State Key Laboratory of Scientific and Engineering Computing, Academia Sinica, Beijing 100080, China; 3. Luoyang U;Exact solitude-like solutions to generalized KdV and mKdV equations with variable coefficients[J];Journal of Gansu University of Technology;2002-03
【Secondary Citations】
Chinese Journal Full-text Database 10 Hits
1 Song Li-ting(Dept. of Geophysics, Peking University);The Burgers-KdV Equation of Ion Acoustic Waves[J];Chinese Journal of Space Science;1988-01
2 Wang Mingliang 1, Li Zhibin 2, Zhou Yubin 1 (1 Department of Mathematics; 2 Department of Computer Science, Lanzhou University, Lanzhou, 730000, China);Homogeneous Balance Principle and Its Applications[J];Journal of Lanzhou University;1999-03
3 ZHANG Jin Liang 1,WANG Yue Ming 1,WANG Ming Liang 1,2 ,Li Qi 3 (1. Dep. of Appl. Math., Luoyang Inst. of Technol., Luoyang 471039, China;2.Dep. of Math., Lanzhou Univ., Lanzhou 730000, China;3.Dep.of Math.,Sichuan Inst. of Educ.,Chengdu 610041,;Anto-Backland Transformation and Solitary Wave Solution with Variable Velocity to the KdV Equation with Variable Coefficients[J];JOURNAL OF LUOYANG INSTITUTE OF TECHNOLOGY;2000-03
4 WANG Yue Ming 1,ZHANG Jin Liang 1,WANG Ming Liang 1,2 (1. Dep. of Appl. Math., Luoyang Inst. of Technol., Luoyang 471039, China; 2. Dep. of Math., Lanzhou Univ., Lanzhou 730000, China);Backlund Transformation and Nonlinear Boundary-initial Value Problem To the Burgers Equation with Variable Coefficients[J];JOURNAL OF LUOYANG INSTITUTE OF TECHNOLOGY;2000-03
5 Fan Engui(Institute of Mathematics, Fudan University, Shanghai 200433)Zhang Hongqing(Institute of Mathematics, Dalian University of Technolgy, Dalian 116024);Some New Applications of Homogeneous Balance Method[J];ACTA MATHEMATIEA SCIENTIA;1999-03
6 LOU SEN-YUE RUAN HANG-YU Division of Modern Physics, Ningbo Normal College, Ningbo, 315211;CONSERVATION LAWS OF THE VARIABLE COEFFICIENT KdV AND MKdV EQUATIONS[J];Acta Physica Sinica;1992-02
7 ZHU ZUO-NONG Department of Basic Science, Jiangtu Agricultural College, Yangzhox 225001;THE SOLITON SOLUTIONS OF GENERALIZED KdV EQUATION[J];Acta Physica Sinica;1992-07
8 ZHANG JIE-FANG CHEN FANG-YUE(Zhejiang Normal University, Jinhua 321004, China);TRUNCATED EXPANSION METHOD AND NEW EXACT SOLITON-LIKE SOLUTION OF THE GENERAL VARIABLE COEFFICIENT KdV EQUATION[J];Acta Physica Sinica;2001-09
9 LIU SHI-KUO 1) FU ZUN-TAO 1)2) LIU SHI-DA 1)2) ZHAO QIANG 1) 1) (Department of Geophysics, Peking University, Beijing 100871,China) 2) (State Key Laboratory of Turbulence Research,Peking University,Beijing 100871,C;EXPANSION METHOD ABOUT THE JACOBI ELLIPTIC FUNCTION ANDITS APPLICATIONS TO NONLINEAR WAVE EQUATIONS[J];Acta Physica Sinica;2001-11
10 Liu Shi Kuo 1) \ Fu Zun Tao 1)2) \ Liu Shi Da 1)2) \ Zhao Qiang 1) 1) (Department of Geophysics, Peking University, Beijing 100871, China) 2) (SKLTR, Peking University, Beijing 100871, China);New periodic solutions to a kind of nonlinear wave equations[J];Acta Physica Sinica;2002-01
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved