Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《Acta Analysis Functionalis Applicata》 2008-01
Add to Favorite Get Latest Update

The Existence of Random Periodic Solutions for a Class Non-local Cauchy Problem of Nonlinear Population Evolution Equation

LIU Xiao-jing, WU Kai-su, XUE Ya-pingDepartment of Mathematics and Information Science, Beijing University of Chemical Technology, Beijing 100029, China  
In this paper, we investigate the following non-local Cauchy problem of nonlinear population evolution equation with random periodic migration perturbation,{(p(r,t))/(t)+(p(r,t))/(r)=-μ(r)p(r,t)+f(t,p(r,t)),0rrm,t0p(r,0)=p0(r)+g(p(r,t0)),Tt00 p(0,t)=β(t)integral from n=r1 to r2 k(r)h(r)p(r,t)dr, t≥0.Here, we let the migration item f and the non-local condition item g as compact operator, and the function f is a periodic function of time veriable t with period T. Using the Shesfer fixed point theorem, the existence of random periodic solution for the above Cauchy problem was proved. Our results generalize the former researches.
【Fund】: 北京化工大学青年科学基金资助(QN0622)
【CateGory Index】: O175
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
【Citations】
Chinese Journal Full-text Database 2 Hits
1 ZHAXG Guo-wei(Department of Mathematics, Shandong University. Shandong. Jinan 250100 China) HUI Shu-rong(Department of Basic Science Shenyang Agricultural University, Liaoning Shenyang 110161 China);The Existence and Uniqueness of Random Periodic Solutions for A class of Nonlinear Population Dynamics with Random Periodic Migration Perturbations[J];生物数学学报;2002-01
2 Zhou Shaopu; Xu Minghao(Wuhan University, Wuhan 430072);THE GLOBAL EXISTENCE AND UNIQUENESS OF THE MILD SOLUTION OF SEMILINEAR STOCHASTIC EVOLUTION EQUATION[J];数学杂志;1996-02
【Co-citations】
Chinese Journal Full-text Database 6 Hits
1 WU Nv-ze,WANG Shen,JI Ming-wen(Department of Fundamental Courses,Tianjin Foreign Studies University,Tianjin 300204,China);Existence of almost periodic solutions for a class of time-varying population system[J];贵州师范大学学报(自然科学版);2010-03
2 SUN Tao1,JIANG Xiu-qin1,DUAN Xiao-dong2(1.School of Sciences,Northeastern University,Shenyang 110004,China;2.School of Computer,Dalian Nationalities University,Dalian 116600,China.);Existence and Uniqueness of Solutions to a Class of Nonlinear Equations of Population Dynamics with Random Migration Perturbation[J];东北大学学报(自然科学版);2008-09
3 YAN Yan,QIN Yan,XIA Ning-mao(Department of Mathematics,East China University of Science and Technology,200237,China);Existence and Uniqueness of Strong Solution for Stochastic Age-dependent Population[J];山西大学学报(自然科学版);2008-03
4 LIU Xiao-jing, WU Kai-su, XUE Ya-pingDepartment of Mathematics and Information Science, Beijing University of Chemical Technology, Beijing 100029, China;The Existence of Random Periodic Solutions for a Class Non-local Cauchy Problem of Nonlinear Population Evolution Equation[J];应用泛函分析学报;2008-01
5 ZHANG Qi-min~1, NIE Zan-kan~2(1.School of Mathematics and Computer,Ningxia University,Yinchuan Ningxia 750021,China;2.School of Science,Xi'an Jiaotong University,Xi'an Shaanxi 710049,China);Exponential stability of stochastic age-dependent population dynamics system[J];控制理论与应用;2004-06
6 LI Zhi-long (Department of Mathematics, Shandong University, Jinan 250100,China);The Existence of Global Solutions for Nonlinear Population Dynamics with Random Migration Perturbations[J];江西师范大学学报(自然科学版);2002-03
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved