Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《应用数学和力学(英文版)》 2018-09
Add to Favorite Get Latest Update

Quadratic convective flow of radiated nano-Jeffrey liquid subject to multiple convective conditions and Cattaneo-Christov double diffusion

P.B.SAMPATH KUMAR;B.MAHANTHESH;B.J.GIREESHA;S.A.SHEHZAD;Department of Studies and Research in Mathematics, Kuvempu University;Department of Mathematics, Christ University;Department of Mathematics, COMSATS Institute of Information Technology;  
A nonlinear flow of Jeffrey liquid with Cattaneo-Christov heat flux is investigated in the presence of nanoparticles. The features of thermophoretic and Brownian movement are retained. The effects of nonlinear radiation, magnetohydrodynamic(MHD), and convective conditions are accounted. The conversion of governing equations into ordinary differential equations is prepared via stretching transformations. The consequent equations are solved using the Runge-Kutta-Fehlberg(RKF) method. Impacts of physical constraints on the liquid velocity, the temperature, and the nanoparticle volume fraction are analyzed through graphical illustrations. It is established that the velocity of the liquid and its associated boundary layer width increase with the mixed convection parameter and the Deborah number.
【Fund】: University Grant Commission (UGC) New Delhi for their financial support under National Fellowship for Higher Education (NFHE) of ST students to pursue M.Phil/PhD Degree (F117.1/201516/NFST201517STKAR2228/ (SAIII/Website) Dated:06-April-2016);; the Management of Christ University Bengaluru India for the support through Major Research Project to accomplish this research work
【CateGory Index】: O35
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved