Full-Text Search:
Home|Journal Papers|About CNKI|User Service|FAQ|Contact Us|中文
《中国化学工程学报(英文版)》 2018-01
Add to Favorite Get Latest Update

Rh_2O_3/monoclinic CePO_4 composite catalysts for N_2O decomposition and CO oxidation

Huan Liu;Zhen Ma;Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,Department of Environmental Science and Engineering,Fudan University;  
CePO_4(in particular,monoclinic CePO_4)has been rarely used to make supported catalysts.Herein,monoclinic CePO_4 nanoparticles were prepared by calcining hexagonal CePO_4 nanorods(prepared by precipitation)in air at 900℃.Monoclinic CePO_4 nanowires were prepared by calcining hexagonal CePO_4 nanowires(prepared by hydrothermal synthesis at 150℃)in air at 900℃.Both monoclinic CePO_4 materials were used to support Rh_2O_3 by impregnation using Rh(NO_3)_3 as a precursor(followed by calcination).The catalytic performance of Rh_2O_3/monoclinic CePO_4 composite materials in N_2O decomposition and CO oxidation was investigated.It was found that Rh_2O_3 supported on monoclinic CePO_4 nanowires was much more active than Rh_2O_3 supported on monoclinic CePO_4 nanoparticles.The stability of catalysts as a function of reaction time on stream was studied in both reactions.The influence of co-fed CO_2,O_2,and H_2O on the catalytic activity in N_2O decomposition was also studied.These catalysts were characterized by employing N_2 adsorption–desorption,ICP-OES,XRD,TEM,XPS,H_2-TPR,O_2-TPD,and CO_2-TPD.The correlation between physicochemical properties and catalytic properties was discussed.
【Fund】: Supported by the National Natural Science Foundation of China(21177028 21477022)
【CateGory Index】: O643.36
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
©2006 Tsinghua Tongfang Knowledge Network Technology Co., Ltd.(Beijing)(TTKN) All rights reserved