Full-Text Search:
Home|About CNKI|User Service|中文
Add to Favorite Get Latest Update

THE DESIGN AND APPLICATION OF TOPEAK: A THREE-DIMENSIONAL MAGNETOTELLURIC INVERSION CLOUD COMPUTING SYSTEM

LIU Zhong-yin;CHEN Xiao-bin;CAI Jun-tao;CUI Teng-fa;ZHAO Guo-ze;TANG Ji;OUYANG Biao;State Key Laboratory of Earthquake Dynamics,Institute of Geology China Earthquake Administration;National Institute of Natural Hazards,Ministry of Emergency Management of People's Republic of China;  
Magnetotelluric(MT)three-dimensional inversion has the advantages of simple data preprocessing, the model is close to actual situation, and the inversion result is more reliable and stable. It is one of the most advanced research topics and would take the place of the dominant two-dimensional inversion definitely. With the improvement of computing capability of computers and the breakthrough in inversion methods, great progress was made in MT three-dimensional inversion in recent years, from the theoretical research and test of this method at the beginning to the current application to practical data interpretation. For the great computation amount of MT three-dimensional inversion, current MT three-dimensional inversion algorithm programs are all implemented in parallel way and it is recommended to do three-dimensional inversion calculations on supercomputing system to make better use of computing resources and improve the inversion efficiency.Different from the MT three-dimensional inversion algorithm programs which have basically realized the utility function, the practical application of MT three-dimensional inversion is still in an early stage. Users should be familiar with the use of multiple software and fulfill the function manually with the help of the software as follows: generating the files required for the inversion program, connecting to the supercomputer to upload data, inputting the command to perform the inversion, etc. The process of manually connecting and operating calculations is the most primitive cloud computing. All processes need to be done manually, which would cause not only heavy workload and the complicated operation, but also the problems for the long-term effective preservation and management of complex inversion data.To conquer this, we develop independently a three-dimensional magnetotelluric inversion cloud computing system, toPeak, using Delphi language. This paper introduces some main features of toPeak. To begin with, system design and analysis are carried out in combination with the current situation and system structure and functions are realized. The main idea is to realize a set of cloud computing system platform based on server-client(C/S), on the basis of perfect inversion data management, integrate the most advanced three-dimensional magnetotelluric inversion algorithm program in the cloud, and connect through the Internet to realize all the system functions of three-dimensional magnetotelluric inversion. Then, the different parts of toPeak are introduced separately, including design structures and designs. The server is deployed on the supercomputer system(supercomputing)to receive the data for inversion tasks, configure and manage the storage of the inversion result data. Combined with the Internet connection, the server and the Internet together constitute a computing cloud. The client is deployed on the users' windows operating system, including Windows visual data integration processing software and Internet operation middleware. The client is designed on the basis of object-oriented programming ideas, with data as the core, using data engineering objects to encapsulate and store all MT data, process and interpret the results, realize data processing inversion and other operations around this data project, and display the process and results of these processing and inversion in graphics using visualization technology. Internet operation middleware connects the client and server based on the SSH protocol to realize data processing and inversion, transmission and command sending and receiving. Furthermore, the whole work flow of inversion using toPeak and parts of procedure of it are shown. At last, some inversion results from toPeak are displayed. toPeak has realized the full functions require for implementing three-dimensional inversion and can grid, process and select, inverse and explain the data. It is a good tool for the practical use of three-dimensional inversion.
Download(CAJ format) Download(PDF format)
CAJViewer7.0 supports all the CNKI file formats; AdobeReader only supports the PDF format.
©CNKI All Rights Reserved